

Tire wear, chemical composition and toxicity

Nick Molden 20 April 2022 INDEPENDENT | RESPONSIVE

Our Belief

When it comes to the pursuit for improved air quality, we believe in the power of clarity, transparency and integrity. With real-world data we can meet emissions challenges – instilling trust and confidence in our industry partners and public.

It's with our commitment and independence we are able to make a significant contribution toward positive change and to achieve enduring results.

Introduction

- Founded in 2011, headquartered in the UK
- Operations in UK, Germany, USA and South Korea
- Independent testing house specialising in real-world emissions testing
- Over 2,500 vehicles/machines tested across passenger, commercial and off-road
- >100 tires tests, >100 vehicle interior tests
- Largest commercially available database of real-world emissions data
- Work with regulators, OEMs, Tier 1/2 suppliers, fuel and chemical companies, fleets
- Chair of EU CEN Workshops 90 and 103
- Honorary Research Fellow, Imperial College London

Agenda

- 1. Tire wear problem
- 2. Determining chemical composition
- 3. Measuring wear rates
- 4. Emissions toxicity
- 5. Environmental effects
- 6. Wider context

The problem

The tire emissions problem

- Over 300,000 tonnes of tire 'rubber' are released in US/Europe annually
- Emissions rates are increasing while tailpipe emissions are falling
- Tires have complex, opaque chemistry
- Environmental propagation and health effects are poorly understood
- No real-world standard test method exists
- Independent insight and clarity urgently needed

Vehicle emissions sources and trends

Emissions source	Trend
Tailpipe	Extremely low on new cars; removing older, dirty cars is priority
Brakes	Significant, but declining as regenerative braking becomes the norm
Road wear	Low but growing, due to increasing vehicle weight, and toxic
Resuspension	Significant, but often less toxic
Tires	Significant, growing and toxic

Determinants of tire emissions

Lever	Sensitivity	Execution
Reduce speed	Limited effect on per-mile emissions	Easy
Change tire model	High, but needs new information	Easy
Drive and corner more smoothly	Effective in principle; compliance hard	Moderate
Reduce vehicle weight	High, but offset by regenerative braking	Moderate
Improve road surface	Eliminating potholes to reduce damage	Difficult
Avoid problematic weather conditions	Unpredictable	Difficult

Concept

Chemical speciation

Х

Tire wear rate

Х

Compound toxicity

Environmental impact

CONFIDENTIAL © Emissions Analytics 2022 9

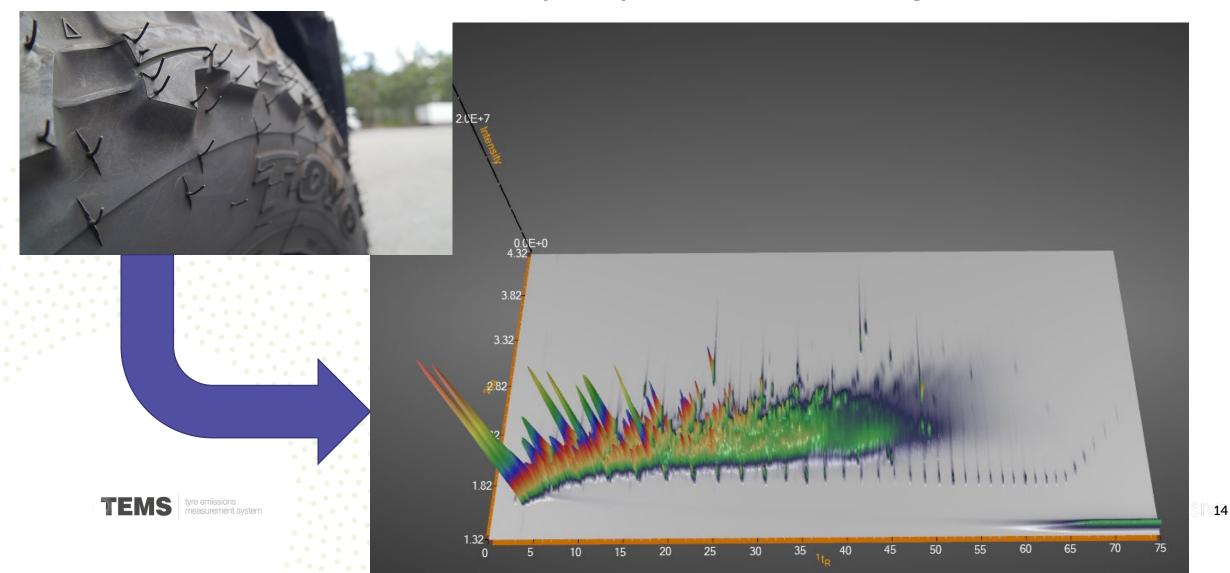
Chemical analysis

Measurements – volatile organic compounds

- Two-dimensional gas chromatography with mass spectrometry from
 - INSIGHT flow modulator from SepSolve Analytical for separation
 - BENCH-TOF time-of flight mass spectrometer
 - **OPTIC-4** sample introduction

Method development

- Objective to perform 'accelerated leaching'
- Quantify organic chemicals released over time
- Allow fair comparison between different tires
- Perform high volume of tests
- Quantification of measurement uncertainty National Physical Laboratory, UK
- Initial results peer reviewed by domain experts
- Submission to EU consultation on tire wear published


Uncertainty budget

	Quantity	Relative uncertainty	 On parts- per-billion
	Mass of tire analysed	0.7%	concentrati
	Peak area of sample – ion current	3.5%	ons
	Compound extraction efficiency	3.0%	
•	Matrix match bias	2.0%	
	Peak area of standard – ion current	2.6%	
	Concentration of compound in stock solution	1.5%	Already significantly
	Volume of calibration compound on TD tube	5.0%	reduced
	Drift of instrument calibration	44%	
	Uncertainty total (k=1, 68%)	23%	
	Uncertainty total (k=2, 95%)	47%	

S **13**

Two-dimensional pyrolysis chromatogram

Common, prevalent compounds in tires

Compound; peak area %	Androstan- 17-one, 3- ethyl-3- hydroxy-, (5 _{\alpha})-	Limonene	β-Guaiene		Ursodeoxy cholic acid	Cyclohexa ne, 1,2,4- triethenyl-	Desogestre I		Doconexen t
	C ₂₁ H ₃₄ O ₂	C10H16	C15H24	C15H24	C ₂₄ H ₄₀ O ₄	C12H18	C ₂₂ H ₃₀ O	C ₂₃ H ₃₂ O	$C_{22}H_{32}O_2$
Tyre 1	16.8	3.8	5.8	2.7	5.4	3.1	1.4	1.9	3.0
Tyre 2	17.2	5.2	4.9	2.4	5.3	2.6	0.5	2.8	4.1
Tyre 3	8.0	5.6	5.4	4.0	10.5	2.0	1.1	3.0	2.4
Tyre 4	7.7	4.9	4.3	4.4	6.7	1.4		2.3	0.6
Tyre 5	6.3	2.7	3.9	1.6		3.3	3.4		
Tyre 6	10.1	3.9	4.3	6.2	0.6	1.8	2.5	1.5	
Tyre 7	10.9	4.9	5.2	5.6		2.7	3.7	1.5	
Tyre 8	10.9	4.3	4.7	5.1	2.8	2.4	2.4	1.8	
Tyre 9	7.9	3.8	4.9	6.3	0.7	1.6	2.5	1.4	
Tyre 10		6.3				4.3			4.1
Total	95.7	45.4	43.3	38.3	32.0	25.1	17.6	16.1	14.3
Description	Unknown	terpenic pine herbal peppery	sweet woody dry guaiacwoo d spicy powdery	sweet woody rose medical fir needle; irritant to skin and	Drug to dissolve cholesterol; irritant to skin and eyes	Eye, skin, respiratory irritant	Hormone	Unknown	Fatty acid
				eyes	cycs				

- Fragrances citrus, sweet, woody, spicy
- Irritants eyes, skin
- High-order carbon compounds
- 2 unknowns
- Tire 10 has very different composition

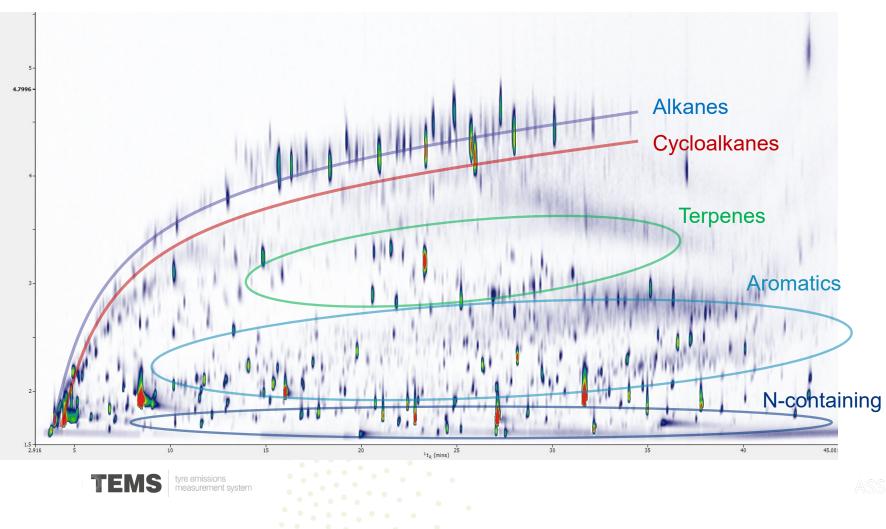
CONFIDENTIAL © Emissions Analytics 2022 15

Notable compounds

Prevalent in Tire 8

HO

- phenol, 2-(1,1dimethylethyl)-4methyl-
- Respiratory irritant, leathery smell



Prevalent in Tire 4, absent from Tire 5

- N-(1,3-dimethylbutyl)-N'-phenyl-pphenylenediamine, aka 6PPD
- Preservative, reacts with ozone in the air
- 6PPD-quinone killed coho salmon in California

Functional group classification

- Wide-ranging analytes identified
- Alkanes: lungs, liver, kidney, brain
- Cycloalkanes: headaches, dizziness
- Terpenes: aromas
- Aromatics:
 carcinogens
- N-containing: carcinogens

Concentration by functional group

- Some compounds are deliberate additions, whereas others come in component mixtures such as carbon black
- Alkanes, etc are often irritants, but toxic in high concentration
- Aromatics, etc are more often carcinogenic and toxic at lower concentrations
- Significant variation in composition between brands and tires
- Ten tires shown, at high and low end of range of aromatics/PAHs – from 25% to 80%

Concentration in sample (µg/mg)	Group 1	Group 2	Group 3
	Acids, Amine and Alcohols	Alkanes, Alkenes, Alkynes, Cyclo, Aldehydes and Ketones	Aromatics and PAH
UKT137	1.1	58.3	49.5
UKT026	1.9	85.3	51.2
UKT160	2.9	69.0	52.5
UKT152	2.5	66.6	52.6
UKT210	0.9	49.5	53.4
UKT138	5.1	63.8	194.4
UKT141	2.4	73.9	201.7
UKT171	1.4	48.1	206.7
UKT147	1.7	72.6	287.3
UKT243	12.8	265.4	451.5
Average	4.1	115.1	112.3
Minimum	0.6	32.8	49.5
Median	2.8	101.0	101.2
Maximum	21.2	265.4	451.5



Wear rates

Total wear rates

- 14 different brands/models tested from new
- Mass loss over 1,000+ miles
- Whole vehicle mass loss (four wheels)
- Same vehicle, route, driver
- Total loss 73 mg/km
- Rate declines logarithmically as tire ages
- Lifetime mass loss estimated at 37 mg/km

Tyre make	Total vehicle mass loss (mg/km)
Brand 1	161
Brand 2	89
Brand 3	81
Brand 4	76
Brand 5	75
Brand 6	75
Brand 7	73
Brand 8	70
Brand 9	66
Brand 10	61
Brand 11	61
Brand 12	51
Brand 13	45
Brand 14	38
Average	73

Speciated wear rates

- Match brand wear rate from new to compound speciation for particular tire
- Yields distance-specific emissions for each individual compound
 - Can be expressed in functional groups
- Aromatics/PAHs wear at average 8.1 mg/km
- But with drill-down to individual compounds

Mass emissions (mg/km)	Group 1	Group 2	Group 3
	Acids, Amine and Alcohols	Alkanes, Alkenes, Alkynes, Cyclo, Aldehyde and Ketone	Aromatics and PAH
UKT137	0.081	4.249	3.606
UKT026	0.139	6.222	3.735
UKT160	0.211	5.031	3.826
UKT152	0.181	4.860	3.834
UKT210	0.067	3.606	3.895
UKT138	0.370	4.654	14.175
UKT141	0.174	5.392	14.709
UKT171	0.102	3.504	15.073
UKT147	0.124	5.292	20.951
UKT243	0.937	19.353	32.924
Average	0.293	8.256	8.146
Minimum	0.045	2.392	3.606
Median	0.204	7.365	7.378
Maximum	1.548	19.353	32.924

Toxicity analysis

Toxicity evaluation

Hazard code	Description
H300	Fatal if swallowed
H301	Toxic if swallowed
H302	Harmful if swallowed
H303	May be harmful if swallowed
H304	May be fatal if swallowed and enters airways
H305	May be harmful if swallowed and enters airways

- Globally Harmonized System of Classification and Labelling of Chemicals (GHS) United Nations' standardised system
- Compounds identified CAS Registry Number, unique identifier assigned by US Chemical Abstracts Service
- European Chemicals Agency database of manufacturer disclosures
- 'Hazard codes' described different effects, from irritants to carcinogens
- Each compound can have multiple hazard codes
- Different manufacturers can make different disclosures
- > Method developed to synthesise into overall toxicity rating for a tire

Toxicity evaluation

- Of 100 tires tested, on average...
- 410 organic compounds separated
- 78 organic compounds identified using NIST library
- 46 hazard codes cited
- Most and least toxic five tires shown
- Weighted toxicity factor, with mean indexed to 100
- Most toxic x6.7 least toxic

	Ε	Μ	S	tyre emiss measuren
2264	_			

Tire #	Weighted toxicity factor
UKT210	43
UKT035	44
UKT214	45
UKT138	49
UKT012	49
UKT089	164
UKT057	167
UKT076	170
UKT115	173
UKT243	289
Average	100
Minimum	43
Median	97
Maximum	289

Environmental effects



£

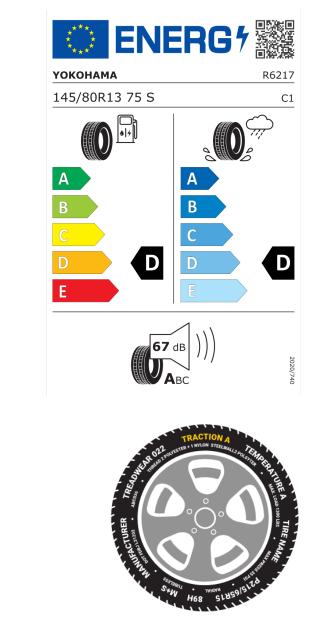
0

Veh

Particle size distribution

Environmental propagation

- On-road test with 'normal' dynamics
- 11% of fine particle mass is below 2.5 µm diameter •
- This material is likely to hang in the air for a period
- The rest is likely to go to soil and water
- But this mass accounts for almost 100% of particle number
- And ultrafines account for 92%
- Affect of desorped VOCs on air quality unknown
- Tires are simultaneously a problem for air, soil and water



Particulate mass	mg/km
PM10	36.5
PM2.5	4.1
PM2.5 proportion of PM10	11%
Ultrafine proportion of PM10	0%
Particulate number	#x10 ¹¹ /km
Particulate number	#x10 ¹¹ /km
Particulate number Down to 23 nm	#x10 ¹¹ /km 1.1
	#x10 ¹¹ /km 1.1 14.5
Down to 23 nm	1.1
Down to 23 nm	1.1

Wider context

Tire performance

- Official tire labels exist in multiple regions
- Current focus on rolling resistance, grip, weather and noise
- Pollutant emissions are currently excluded
- Closest proxy is 'tread wear rating' in US
- Price is important additional metric
- A standard method could allow toxicity rating to be added
- Immediately wear rates and composition can be correlated to performance, to aid development less toxic tires without compromising performance

Context of tailpipe emissions

- 37 mg/km tire wear is x8 maximum permissible tailpipe mass emissions
- 0.02 mg/km is actual, real-world tailpipe mass emissions from latest cars
- Tires are x1,850 times more polluting on this measure
 - 14.5 x 10^{11} #/km is x2.4 maximum permissible tailpipe number emissions
- \sim 0.9 x 10¹¹ #/km is actual gasoline PN, and 0.1 x 10¹¹ #/km is actual diesel
- Tires are x29 times more polluting on this measures, averaged across fuel types
- Tire mass emissions increase by 21% for 500 kg extra mass, all else equal
- This increase is x389 the average tailpipe mass emission

Summary

- Tire wear emissions are a material and growing concern
- For air, soil and water and, indirectly, the human food chain
- Wear can be measured in real-world conditions
- Two-dimensional gas chromatography offers possibility of full chemical profiling
- Toxicity can be estimated from that
- Composition can be correlated to performance

Subscription database

	MISSIONS	Home	Vehicle	s∙ A	nalysis	· → Admin →	Search by I	D Q	Hello Nick Mo	lden Log (out			
Home	e / Tires / Tire Ra	anking												
	Budget				Mid-	market		D	All Commo	- 1 -				
								Sample Date	Tire Description		Toxicity Rating	Alkanes	Aromatics	Acids
Alkar	nes Aromatics	Acids										µg/mg	µg/mg	µg/mg
							A _:-	★ 2021-02-04	2020 Avon AX7 255/	55 R19		2608	2163	78
		urope					Asia	Details						
#	Manufacturer	Conc	МоМ	YoY	#	Manufacturer	Conc							
		µg/mg					µg/mg	Region Tire Type	Europe Passenger	Top 10 C 9.4%	Compounds D-Limonene			
1	Avon	1683			0	Bridgestone	1583	Market Segment	-	6.6%	1,3-Pentadiene			
2	Barum*	1686			2	Τογο*	1811	Tire Size Load Rating	255/55 R19 111	5.0% 4.6%	Androstan-17-one, 3-ethyl-3-hydroxy-, (5α)- Toluene			
		1872		_			1847	Speed Rating	H CHINA	3.1% 3.0%	1,3,5-Hexatriene			
3	Pileili	10/2			3	JKTyle	1047	Country of Manufacture Year of Manufacture	2020	3.0%	p-Xylene Ursodeoxycholic acid			
								Week of Manufacture	15	2.7% 2.4% 2.2%	Cyclopropane, 1,1-dimethyl- Benzene Ethinamate			

- Fingerprinting database to be launched in May 2022
- For benchmarking, research and development

Thank you.

Nick Molden Chief Executive Officer nick@emissionsanalytics.com +44 (0)20 7193 0489

ASSURED | INDEPENDENT | RESPONSIVE

Assured

Emissions testing in real-world conditions brings challenges that experience anticipates and expertise overcomes. We deliver.

Independent

Objectivity and candour are the driving forces in all our work, so you know the facts.

Responsive

We're fast on our feet so we can conduct emissions testing when and where we're needed.

